Обзор основных методов сварки
Развитие технологий, изобретение новых металлических сплавов, повышение требований к прочности и долговечности конструкции — причины появления различных способов сварки. Различные методы сварки также обусловлены все более высокими требованиями к стыкам неразъемных конструкций, высокими требованиями к увеличению скорости, производительности и эффективности производственных процессов. Хотя некоторые методы сварки кажутся чисто теоретическими и редко используются на практике, они также заслуживают внимания. Не исключено, что на каком-то этапе развития материалов или технологий они более широко войдут в промышленное производство. Это касается лазерной или плазменной сварки. Давайте посмотрим на критерии классификации различных методов сварки.
В современной промышленности используются различные методы сварки металлов. Чаще всего металлы классифицируют по энергии, используемой для сварки . Исходя из этого, все способы сварки делятся на четыре основные группы:
- электрический
- химически
- механический
- луч
Чтобы сделать сварное соединение двух частей, нужна дополнительная энергия, которую нужно подводить в зону сварки. Внешняя энергия для процесса может быть введена в виде тепла и / или силы. В зависимости от вида энергии мы различаем две основные группы методов сварки и соответствующие им разновидности.
Путем плавления
- Электрическая дуга
- Газ-кислород
- Электрошлак
- Электронный луч
- Лазерный
- Термит
Под давлением
- Электрическое сопротивление
- Высокая частота
- Электродуговая сварка шпилек
- Диффузия
- УЗИ
- Сварка трением
- Сварка взрывом
Методы сварки:
Сварка сопротивлением
Это делается тремя способами:
Фронтальное электрическое сопротивление
Свариваемые детали фиксируются в губках сварочного аппарата. Затем через челюсти трансформатора пропускается электрический ток и концы деталей сближаются. В точке соприкосновения концы быстро нагреваются до высокой температуры, после чего отключается электрический ток, детали прижимаются и свариваются. Этот метод в основном используется для сварки арматуры и инструментов.
Точечное электрическое сопротивление
Сварные металлические листы 1 кладут друг на друга и прижимают между двумя медными электродами. От источника тока через электроды подается электрический ток, который сильно нагревает металл в месте соприкосновения соединяемых частей. Затем отключают ток, электроды прижимают сильнее и металл в этом месте сваривают. Сварной шов представляет собой несколько сварных точек. Этот метод применяется в массовом производстве бытовых электроприборов и в автомобильной промышленности.
Роликовое электрическое сопротивление
Выполняется на аппарате с тем же устройством, что и на аппарате точечной сварки. Отличие в том, что вместо электродов для прижатия металлических листов используются ролики, через счетчик пропускается электрический ток от источника тока. В результате получается полный непрерывный сварной шов. Он состоит из нескольких точек сварки, частично перекрывающих друг друга.
Электрическая дуга имеет наибольшую практическую долю среди всех методов сварки.
В зависимости от положения электрическая дуга делится на два типа:
Дуговая сварка открытой дугой
В этом методе электрическая дуга горит в атмосфере. По типу электродов мы различаем два отдельных метода сварки открытой дугой: метод Славянова и метод Бенардоса.
В методе Славянова электрический ток по одному из проводников подводится к свариваемому металлу, а по другому — к электрододержателю, в котором зажат металлический электрод. В процессе сварки кончик металлического электрода плавится от сварочной дуги между металлом сварного шва и электродом и образует жидкий металл, заполняющий зазор между свариваемыми частями.
В методе Бенардоса в электрододержатель помещают неплавкий электрод. Этот электрод не плавится в сварочной дуге, а только служит для ее формирования и поддержания. Изделие сваривают путем плавления дополнительного металлического стержня, который кладут сбоку в области дуги. Этот метод сейчас малопригоден.
Плазменная сварка
Плазма представляет собой смесь электрически нейтральных молекул газа ( аргон , водород, азот и их смеси) и электрически заряженных частиц — электронов и положительных ионов, а иногда и тяжелых отрицательных ионов. Если сечение плазменной струи уменьшить по сравнению со свободной струей под действием магнитных полей за счет продувки газовой струей или распыляемой жидкостью, подаваемой через сопло, ее температура может повыситься до 20000-30000 ° C. Полученный плазменный поток используется для сварки как тугоплавких, так и легко окисляемых металлов. Помимо использования плазменного флюса для сварки, он также используется для резки алюминия, меди, сплавов, углерода, жаропрочных сталей и тугоплавких металлов.
Электрошлаковая сварка
В этом методе сначала обнаруживается дуга между электродной проволокой и свариваемыми листами. Затем вручную подается флюс, который плавится от дуги, образуя жидкую ванну. Таким образом, радуга горит только в начале процесса. Дальнейшее плавление электродной проволоки и основного металла происходит из жидкого флюса. Его температура плавления всегда должна быть выше, чем у основного металла и электродной проволоки.Для охлаждения сварного шва используются охлаждаемые водой медные пластины. При автоматическом перемещении подушки охлаждаются и образуют сварочную ванну с этим сварным швом.
Этот метод используется для сварки толстых деталей в судостроении.
Индукционная сварка
Этот метод особенно удобен для сварки труб. Похож на фронтальный метод. Две трубы расположены друг напротив друга на определенном расстоянии. На их концах расположены катушки с противоположной магнитной движущей силой. Когда между концами трубок обнаруживается дуга и к катушкам подается ток, в последних создается магнитный радиальный поток. Этот поток действует на дугу, и она начинает быстро вращаться, и через короткое время концы трубок оплавляются. Затем ток прекращается и трубы прижимаются друг к другу.
Методы химической сварки
К химическим методам относятся:
Газопламенная сварка
В прошлом этот метод сварки широко применялся. Сейчас он используется в основном в цветных металлах и тонких стальных деталях.
При газовой сварке в качестве источника тепла используется топливный газ (ацетилен, пропан, природный газ, водород и др.), Смешанный с кислородом в специальной горелке. Свариваемые детали нагреваются в месте сварки пламенем газовой смеси, подаваемой горелкой. Тепло пламени топлива плавит основной металл, а вместе с ним и присадочный металл. После застывания расплавленного металла получается сварной шов.
Газопламенная сварка также применяется для соединения труб. Для этого используются специальные кольцевые горелки с множеством форсунок. Горелка состоит из двух полуколец, которые опираются на трубу.
Термитная или алюминий-термитная сварка
Известно, что при горении смеси порошкового алюминия и порошкового оксида металла возникает высокая температура. Эта порошковая смесь называется термитом, отсюда и название этого метода сварки. При сжигании термитов образуется жидкая термитная смесь с температурой около 3500 ° C. Сварные части помещают в виде огнеупорной почвы. В эту форму заливается жидкая термитная смесь, высокой температуры которой достаточно для расплавления свариваемых деталей. Термитная смесь является не только теплоносителем, но и связующим металлом.
Механическая сварка
При механической сварке соединение выполняется за счет механической работы, которая достигается приложением трения или сильного давления. В эту группу входят:
Сварка трением
Этим методом свариваются детали круглого сечения из стали, меди, латуни, алюминия. Для этого две части помещаются на сварочный аппарат. Деталь 2 затягивается в патроне и получает вращательное движение. Деталь 2 закреплена в губках станка. Две части слегка прижимаются друг к другу. Вращательное движение передается части 2. Из-за трения в месте соприкосновения двух частей температура достигает 1200 ° С. Когда материал приводится в пластичное состояние, вращение детали прекращается и две части прижимаются друг к другу с определенной силой, в результате чего они свариваются.
Холодная сварка
В этом методе они подвергаются сварке с металлическими соединениями, которые обладают достаточной пластичностью (например, медь, алюминий, цинк , титан, свинец). Сварка производится на специальном прессе следующим образом. Поверхности деталей идеально выровнены и очищены. Сваренные детали помещают между пуансонами и прижимают с определенным усилием. Затем с помощью штампов и в точке соединения прикладывается сила, достаточная для сближения молекул двух частей и достижения сварного соединения.
Ультразвуковая сварка
Этот метод основан на использовании механических ультразвуковых колебаний металла. Это дает возможность сваривать детали небольшой толщиной от нескольких микрометров до 1,5 мм.
Сварочный аппарат с магнитострикционными преобразователями используется для преобразования электрической энергии в механическую ультразвуковую. Вибрационный вращающийся сердечник, изготовленный из специальных сплавов. У них есть возможность изменять свой размер, увеличивать или уменьшать их при намагничивании. На сердечник помещена катушка, на которую подается высокочастотный переменный ток, и при изменении тока длина сердечника изменяется синхронно — механические ультразвуковые колебания происходят с той же частотой. Через концентратор эти колебания передаются на свариваемый материал от верхнего и нижнего электрода. Поверхность очищается от грязи от вибраций. С другой стороны,за счет механических колебаний (за счет трения) поверхностный слой металла под электродом и в зоне соприкосновения деталей нагревается, а электроды прижимаются.
Методы лучевой сварки
В третью основную группу входят:
Электронно-лучевая сварка
Благодаря высокой температуре, достигаемой этим методом сварки, можно сваривать легкие металлы, такие как молибден-титан. Во время сварки металл в зоне стыка подвергается интенсивному воздействию электронного луча. Когда они падают на поверхность продукта, электроны выделяют свою кинетическую энергию, преобразуют ее в тепло и нагревают металл. Это тепло плавит металл, в результате чего образуется сварное соединение.
Фотон (свет) — лазерная сварка
Открытие оптических квантовых генераторов — лазеров — имеет большое значение для фотонной сварки. Это новый тип источника света. Лазерное излучение фокусируется оптической линзой в пятно очень маленького размера диаметром несколько микрометров (от 80 до 500 мкм). Сегодня лазерная сварка становится все более распространенной технологией в промышленном производстве.
Оставить комментарий